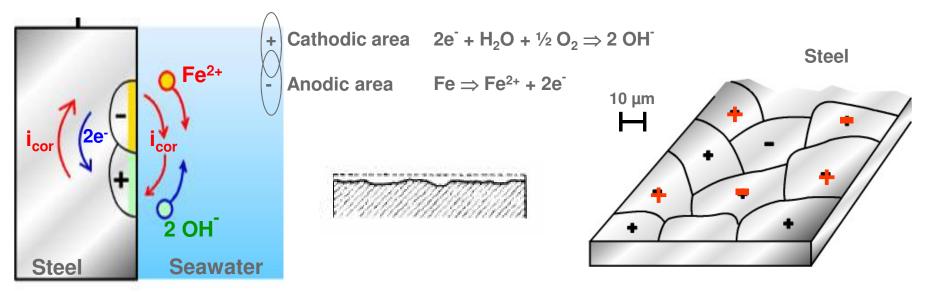

Durability of Sheet Pile Structures

Falko Zueck 07.05.2014

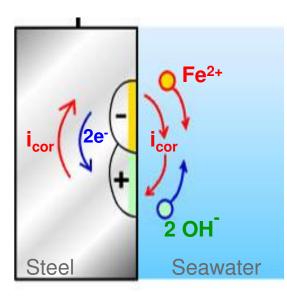

Corrosion of steel. Basics

- Iron present in oxidized state on earth
- Steel making

• Corrosion of steel (natural phenomenon)

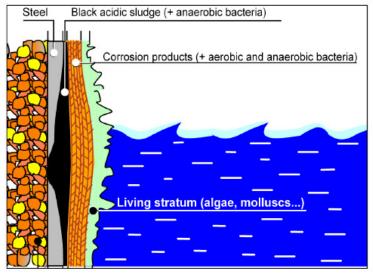


Uniform corrosion


- Homogeneous thickness loss over the steel surface
- Result from random variations of anodic/cathodic area on a microscopic scale
 - steel heterogeneities (grain orientations, composition,...)
 - environmental microscopic fluctuations (dissolved oxygen, solution conductivity,....)

Localized corrosion of carbon steel

- Pitting corrosion
 - Variations of microscopic parameters, modification steel interface
 - Steel, environment,....



Accelerated Low Water Corrosion (ALWC)

- Aggressive form of corrosion
 - Associated to Microbiologically Influenced Corrosion (MIC)
 - Low Water level (LAT) in Tidal waters
 - Higher corrosion rates than normally observed in Low Water zone

=> Corrosion rates of more than 1 mm per year

Fundamentals of corrosion

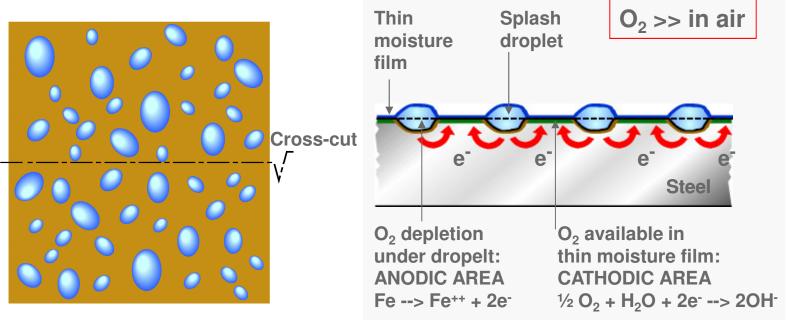
- Basic requirement:
 - Electrolyte i.e. conductive solution: fresh water, sea water, moisture film
 - Electrodes i.e. metallic pieces
 - Species to be reduced: $2H^+ + 2e^- -> H_2$

```
\frac{1}{2}O_2 (dissolved) + H<sub>2</sub>O + 2e<sup>-</sup> --> 2 OH<sup>-</sup>
```

Species to be oxidised: Fe --> $Fe^{2+} + 2e^{-}$ Zn --> $Zn^{2+} + 2e^{-}$

 Thermodynamics: Corrosion possible IF [E cathode - E anode] > 0

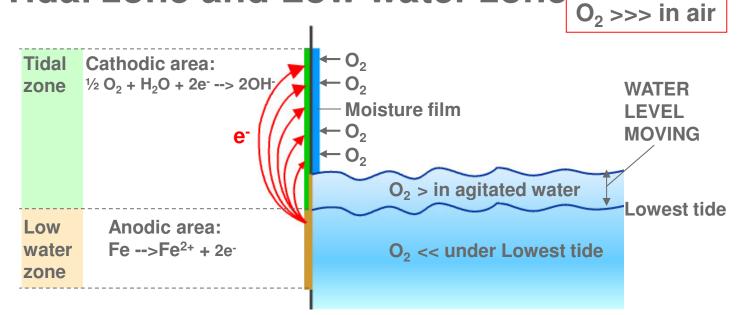
Function of pH, O₂, nature of metal, T°


• Kinetics:

Corrosion rate function of Electrolyte conductivity

 H^+ / O_2 availability (T°, agitation)

Splash zone



Differential aeration micro-cells wet / dry cycles alternating at high rate

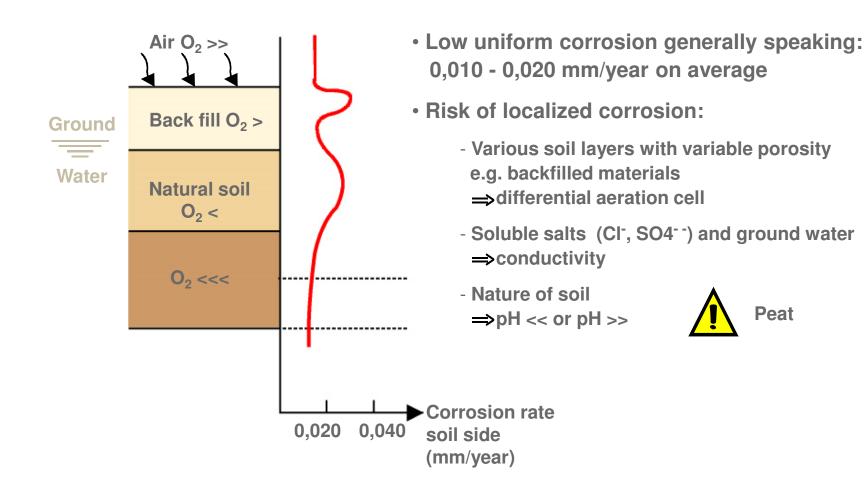
High attack: 0,075 mm/year on average in sea water

Tidal zone and Low water zone

- Differential aeration macro-cells
- Surface of cathodic area >> Surface of anodic area Balance of charge transfer

Example: $3 \text{ m}^2 \text{ x} [\frac{1}{2} \text{ O}_2 + \text{H}_2\text{O} + 2\text{e}^- -> 2\text{OH}^-] <---> 1 \text{ m}^2 \text{ x} [\text{Fe} --> \text{Fe}^{2+} + 2\text{e}^-] \text{ x} 3$

High attack in LW zone: 0,075 mm/year on average in sea water Low attack in tidal zone: 0,035 mm/year on average in sea water

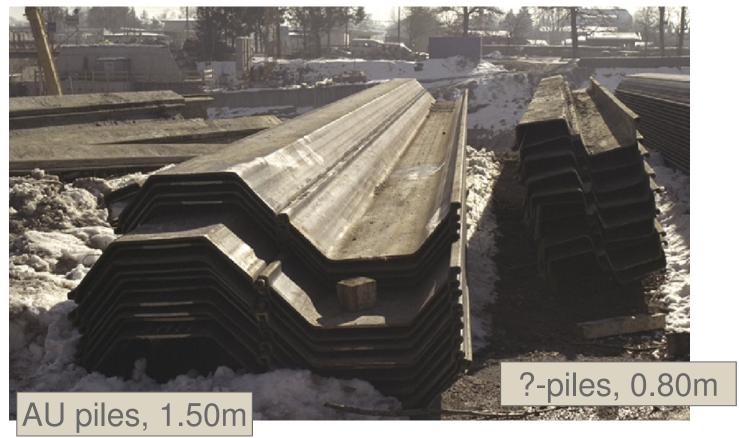


Immersion zone 10 Dissolved O₂ 0 Lowest tide mg/l Low water 1 m zone 2 m O₂ dissolved << Immersion 3 m 1/2 O₂ + H₂O + 2e⁻ --> 2OH⁻ zone Fe -->Fe²⁺ + 2e⁻ 4 m

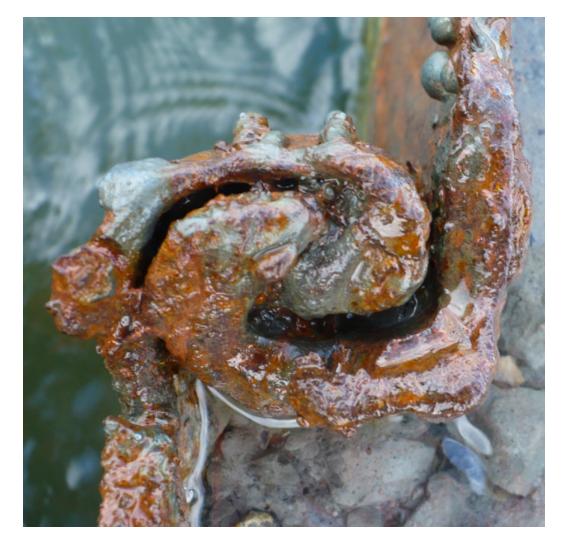
- Corrosion controlled by O₂ availability
- O₂ diffusion on large scale from surface
- O₂ diffusion close to interface through fouling, deposits and corrosion products
- Low attack: 0,035 mm/year on average in sea water

Corrosion in soils

Splash zone corrosion – Example Guaymas Marina – Baja California - Mexico

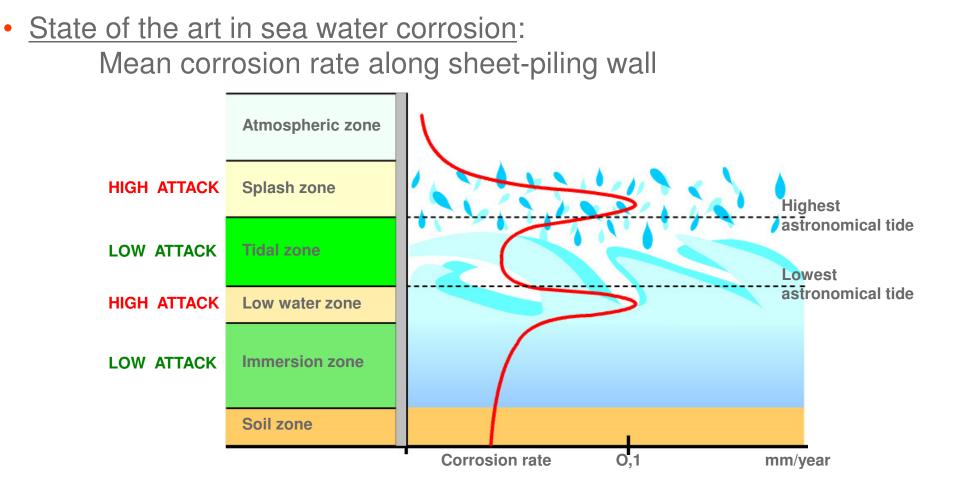


- Severe climatic conditions (heat / high salinity / strong winds)
- AZ26, 5 years exposure without protection
- Corrosion product 15-20 thicker than actual corrosion loss
- Thickness measurements confirmed that corrosion was in normal range


Corrosion in soil - Example

•pulled out 400 mm wide double piles after 40 years in good condition

Corrosion behaviour of the interlock



• low corrosion inside interlock

Uniform corrosion of SSP in water

Durability of steel structures

- Atmospheric corrosion is very low
- Corrosion in undisturbed natural soils is very low (exception peat, ...)
- Corrosion in common fresh water is low
- Corrosion in sea water is different (splash zone, low water, immersed)

design life (years)	5	25	50	75	100	
undisturbed natural soils (sand, clay,)	0.00	0.30	0.60	0.90	1.20	
common fresh water: waterline	0.15	0.55	0.90	1.15	1.40	(r
sea water: permanent immersion & intertidal	0.25	0.90	1.75	2.60	3.50	
sea water: splash & low water zone	0.55	1.90	3.75	5.60	7.50	

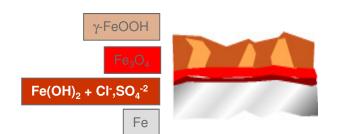
Loss of thickness: Table 4.1 & 4.2, prEN 1993-5 (2007)

Durability of steel structures

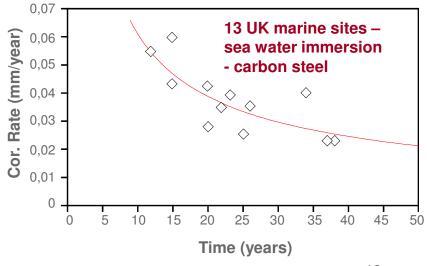
Solutions:

- design ssp with maximal bending moment in zone with reduced corrosion rates
- 'sacrificial' thickness of steel
- higher steel grade \Rightarrow increases safety factor on steel
- surface protection (coating \Rightarrow aesthetics)
- cathodic protection (zones constantly in contact with water)
- concrete capping beam down to 1.0 m below low water

Capping beam / Coating


Protection of upper part of SSP quay wall including low water zone => concrete capping beam / coating

Corrosion protection of SSP walls



- Passivation:
 - Self-protection by corrosion products
 - adhering the corrosion interface
 - forming a partial barrier to O₂ diffusion

Development of passivation layer
 leading to decrease of
 corrosion rate with time

Rust simplified

Corrosion resistance : A 690 Mariner Steel Grade

Standard Specification for High-Strength Low-Alloy Steel H-Piles and Sheet Piling for Use in Marine Environments¹

1. Scope

Designation: A 690/A 690M - 00a

1.1 This specification covers high-strength low-alloy steel H-piles and sheet piling of structural quality for use in the construction of dock walls, sea walls, bulkheads, excavations, and like applications in marine environments.

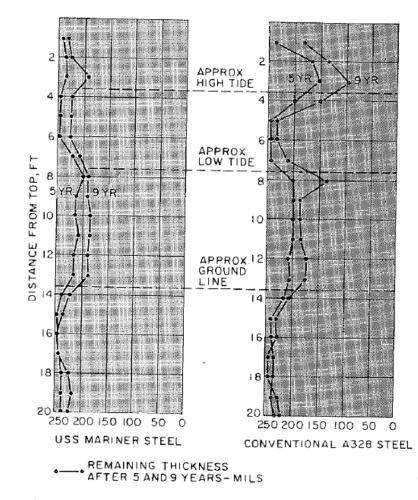
1.2 The steel has approximately two to three times greater resistance to seawater "Splash Zone" corrosion than ordinary carbon steel (Specifications A 36/A 36M and A 328/A 328M) where exposed to the washing action of rain and the drying action of the wind or sun, or both. Where the steel is not boldly exposed, the usual provisions for the protection of ordinary carbon steel should be considered.

Improved splash zone corrosion behaviour

1. Scope[∗] This specification covers high-strength low-alloy nickel,

copper, phosphorus steel H-piles and sheet piling of structural quality for use in the construction of dock walls, sea walls, bulkheads, excavations, and like applications in marine environments.

1.2 The atmospheric corrosion resistance of this steel is substantially better than that of ordinary carbon steels with or without copper addition (see Note 1). The steel has also shown to have substantially greater resistance to seawater "Splash Zone" corrosion than ordinary carbon steel (Specifications A 36/A 36M and A 328/A 328M) where exposed to the washing action of rain and the drying action of the wind or sun, or both. Where the steel is not boldly exposed, the usual provisions for the protection of ordinary carbon steel should be considered.


Standard Specification for High-Strength Low-Alloy Nickel, Copper, Phosphorus Steel H-Piles and Sheet Piling with Atmospheric Corrosion Resistance for Use in Marine Environments¹

Corrosion resistance : A 690 Mariner Steel Grade

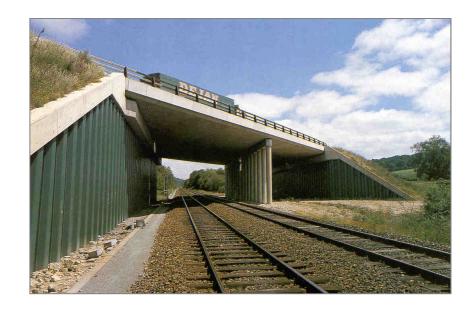
TABLE 1 Chemical Requirements

Element	Composition, % Heat Analysis
Carbon, max	0.22
Manganese ⁴	0.60-0.90
Phosphorus	0.08-0.15
Sulfur, max	0.04
Silicon, max	0.40
Copper, min	0.50
Nickel	0.40-0.75

^A Manganese, for each reduction of 0.01 percentage point below the specified carbon maximum, an increase of 0.06 percentage points manganese above the specified maximum is permitted, up to a maximum of 1.10 %.

0,5% Cu 0,4% Ni - 0,1% P

Figure 7. Comparative corrosion rates on two steels in marine environments.

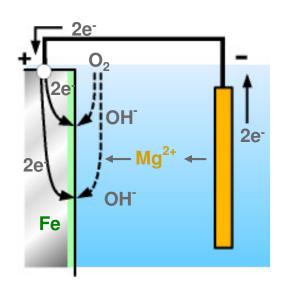

ArcelorMittal

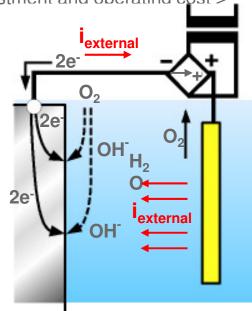
Surface protection

- coatings (epoxy / glass flake)
- duplex systems

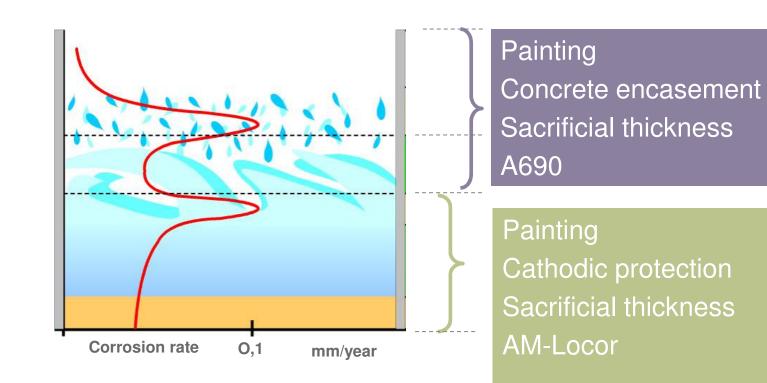
Coatings:

- blasting (shot, sand)
- primer
- 1st layer
- 2nd layer
 (before / after driving)


Coatings: EN ISO 12944 / BAW


- atmospheric: 240 μm
- fresh water: 380 μm
- sea water: 380 μm
- waste disposal: 480 μm

Cathodic Protection


- Basic principle : Setting steel potential in the immunity region
 - Sacrificial anodes
 - Zn, Al, Mg anodes
 - Investment and operating costs <
 - Limited durability due to anodes consumption ---> replacement
- Impressed current
 - Graphite or high-silicon cast-iron anodes
 - Transformer/rectifier as direct current source
 - Investment and operating cost >

Corrosion Protection of SSP walls in different zones

Steel sheet pile sections: classes acc. EC 3-5 ArcelorMittal

EN 1993-5: 2007 (E)

Classification		Z-profil	le		U-profile)	
Class 1				ries as for cla has to be carr			
Class 2			$\frac{b/t_f}{\varepsilon} \le$	45		$\frac{b/t_f}{\varepsilon} \le 37$	
Class 3			$\frac{b/t_f}{\varepsilon} \le$	66		$\frac{b/t_f}{\varepsilon} \le 49$)
235	<i>f</i> _y [N/mm ²]	240	270	320	355	390	430
$\mathcal{E} = \sqrt{f_y}$	ε	0,99	0,93	0,86	0,81	0,78	0,74
not greate t _f : thickness	the flat portion of the flange for adius of the cor ngth.	erwise a more or flanges wit	e precise app th constant th	roach should iickness;	be used;	rovided that th	ne ratio r/t _f is

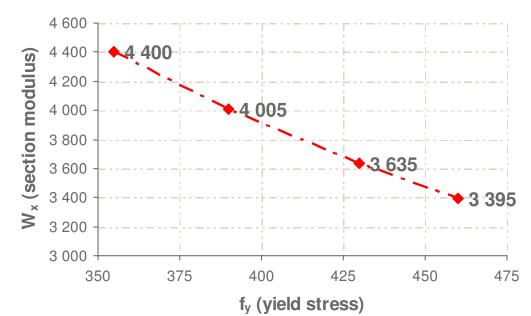
Table 5-1: Classification of cross-sections

Steel sheet pile sections: classes acc. EC 3-5

(2) The design moment resistance of the cross-section M_{c,Rd} should be determined from the following:

- Class 1 or 2 cross-sections:
$$M_{c,Rd} = \beta_B W_{pl} f_y \gamma_{M0}$$
 (5.2)

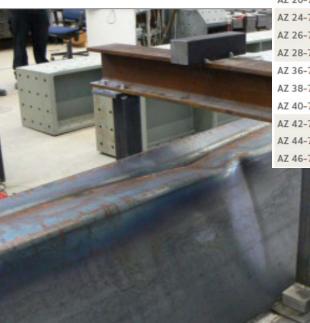
- Class 3 cross-sections: $M_{c,Rd} = \beta_B W_{el} f_y / \gamma_{M0}$ (5.3)
- W_{el} is the elastic section modulus determined for a continuous wall;
- W_{pl} is the plastic section modulus determined for a continuous wall;


- β_B is a factor that takes account of a possible lack of shear force transmission in the interlocks and has the following values:
 - $\beta_B = 1,0$ for Z-piles and triple U-piles
 - $\beta_B \le 1,0$ for single and double U-piles.

Optimized solutions in high yield steel grade

Advantages of steel grades with high yield strengths S 430 GP or S 460 AP

- Economical solution for high bending moments
- weight reductions of 20-30% can be achieved
- S 460 AP in next version of EN 10248 (S460GP)
- Advantageous for impact driving in hard ground (higher driving stresses possible without plastic deformation)
- Check drivability of thinner section
- Check section classification after corrosion



W _x (cm³/m)	f _y (MPa = N/mm²)	BMC (kNm/m)
4 400	355	1 562
4 005	390	1 562
3 635	430	1 563
3 395	460	1 562

Steel sheet pile sections: classes acc. EC 3-5

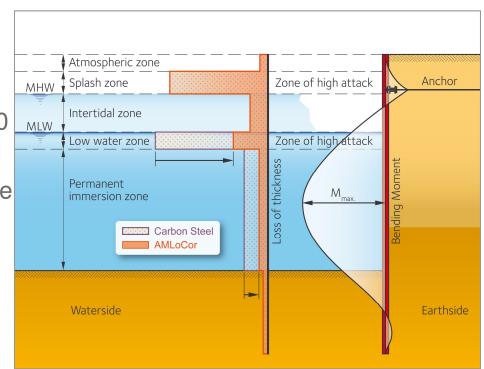
Section	Width	Height	Thick	ness	Sectional area	Ma	355	Moment of inertia	Elastic section modulus	Static moment	Plastic section modulus	•		Cla	ass ¹¹			
	b mm	h mm	t mm	s mm	cm²/m	single pile kg/m	wall kg/m²	cm4/m	cm³/m	cm³/m	cm³/m	\$240 GP	22	320 (8	8 8 8 8 8	S 460 4P	8 •
AZ-700 and AZ-770)																	
AZ 12-770	770	344	8.5	8.5	120	72.6	94	21430	1245	740	1480	2	2	з	3	3	33	
AZ 13-770	770	344	9.0	9.0	126	76.1	99	22360	1300	775	1546	2	2	3	3	3	33	
AZ 14-770	770	345	9.5	9.5	132	79.5	103	23300	1355	805	1611	2	2	2	2	3	33	
AZ 14-770-10/10	770	345	10.0	10.0	137	82.9	108	24240	1405	840	1677	2	2	2	2	2	33	
AZ 17-700	700	420	8.5	8.5	133	73.1	104	36230	1730	1015	2027	2	2	3	3	3	33	
AZ 18-700	700	420	9.0	9.0	139	76.5	109	37800	1800	1060	2116	2	2	3	3	3	33	
AZ 19-700	700	421	9.5	9.5	146	80.0	114	39380	1870	1105	2206	2	2	2	3	3	33	
AZ 20-700	700	421	10.0	10.0	152	83.5	119	40960	1945	1150	2296	2	2	2	2	2	33	
AZ 24-700	700	459	11.2	11.2	174	95.7	137	55820	2430	1435	2867	2	2	2	2	2	23	
AZ 26-700	700	460	12.2	12.2	187	102.9	147	59720	2600	1535	3070	2	2	2	2	2	22	4
AZ 28-700	700	461	13.2	13.2	200	110.0	157	63620	2760	1635	3273	2	2	2	2	2	22	2
AZ 36-700N	700	499	15.0	11.2	216	118.6	169	89610	3590	2055	4110	2	2	2	2	2	22	2
AZ 38-700N	700	500	16.0	12.2	230	126.4	181	94840	3795	2180	4360	2	2	2	2	2	2 2	
AZ 40-700N	700	501	17.0	13.2	244	134.2	192	100080	3995	2305	4605	2	2	2	2	2	2 2	2
AZ 42-700N	700	499	18.0	14.0	259	142.1	203	104930	4205	2425	4855	2	2	2	2	2	2 2	
AZ 44-700N	700	500	19.0	15.0	273	149.9	214	110150	4405	2550	5105	2	2	2	2	2	22	
AZ 46-700N	700	501	20.0	16.0	287	157.7	225	115370	4605	2675	5350	2	2	2.	2	2	2 2	

Local buckling (class 4)

- width b
- thickness flange t_f
- yield stress f_v

Software tool "DURABILITY EC 3-5"

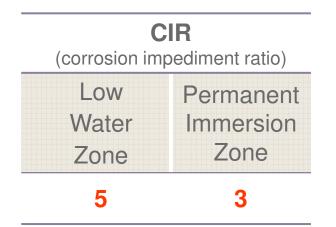
S Actions	AZ 13-770) ———			Classification
Sheet pile section: AZ 13-770			1 9.	0 90	(b/t,)/s 53
📎 Steel grade: 5 430 GP fy = 430 MPa			** † 	<u>X.</u> ,	Class ini. 3
Partial safety factors	p	1	 1540		d Class red. 4
Service life: 50 years Loss of steel: 2.95 mm	-				f _{y (Class 3)} 308.7 MPa ε _(Class 3) 0.873
😵 Steel quantities: 65 pairs 12.00 m 118.6 metric t	- Section p	rop.: AZ 1	3-770		Loss of steel: 2.95 mm
		ini.	red.		Front : 1.75 mm
	Wel,y	1300	965	cm³/m	Sea water in temperate
	Wpl,y	1546	1110	cm³/m	climate in the zone of permanent immersion or in
	Іу	22360	16490	cm4/m	the intertidal zone
	A	125.8	90.8	cm²/m	Back : 1.20 mm
	tf	9.00	6.05	mm	Back. 1.20 mm
	tw	9.00	6.05	mm	Non-compacted and
	h	344.0	341.1	mm	non-aggressive fills (clay, schist, sand, silt,)
	alpha	39.5		•	
	b	351.0		mm	
	C	526.7		mm	
	AV	39.2 775	26.3	cm²/m	- Steel quantities
	Sy r0	15.0		cm³/m mm	Total 118.6 metric t
	mass	98.8		kg/m²	SSP pairs 65
	111035	50.0		Ng/111	Wall length 100.1 m


- Section classification changes after corrosion loss (reduction of flange thickness)
- In case of class 4 section, the "design yield stress" can be reduced accordingly to fulfill criteria of a class 3 section
- DURABILITY EC3-5 software tool for structural verification (beta-version available)

AMLoCor ArcelorMittal Low Corrosion Steel Grade

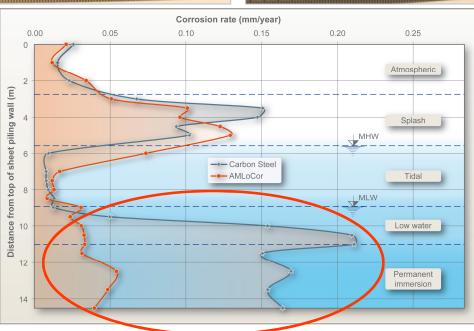
the solution to corrosion issues in the Low Water Zone & Permanent Immersion Zone (seawater)

- exceptional performance based on 20 years of development & testing
- for all types of SSP-structures that are exposed to sea water
- alternative to cathodic protection systems (more cost efficient and environmentally friendly)
- Micro Alloyed Steel with increased Chrome and Aluminium content



AMLoCor

13 14 15


New steel grade: AMLoCor®

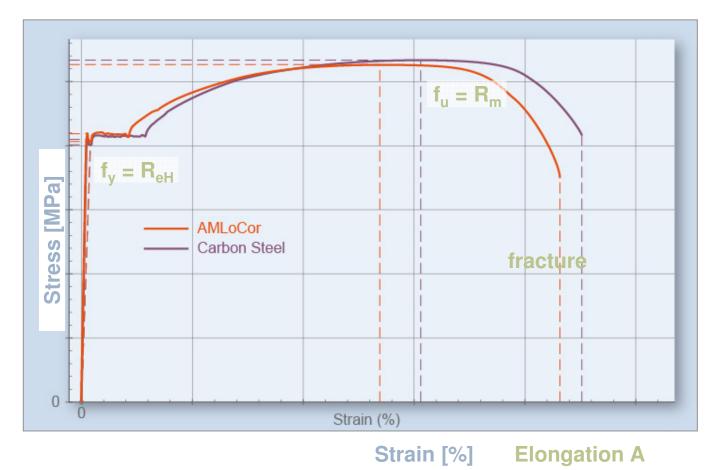
Higher corrosion resistance (special chemical composition)

Measured corrosion rates in a port in UK (over 15 years) U-channel



AM LoCor – How does it works

ESMA microscopic analysis of a sample



distance (microns)

Concentration of alloying elements Cr and AI at the surface → modified corrosion products from a protective layer

Fit-for-purpose for piling

Not in accordance with EN10248, but has a comparable behaviour and the well established design ruled for SSP can be applied (EAU, Eurocode, ...)

ETA European Technical Agreement in progress

Chemical composition

Steel grades of sheet pile sections

Steel grade	Min. yield	Min. tensile	Min. elongation			Cherr	nical comp	osition (9	6 max)		
EN 10248	strength R _{eH} MPa	strength Rm MPa	L₀=5.65√S₀ %	С	Mr	ı	Si	Р	S		N
S 240 GP	240	340	26	0.25	_		-	0.055	0.055	0.	011
S 270 GP	270	410	24	0.27	-		-	0.055	0.055	0	011
S 320 GP	320	440	23	0.27	1.7	0 (0.60	0.055	0.055	0	011
S 355 GP	355	480	22	0.27	1.7	0 (0.60	0.055	0.055	0	011
S 390 GP	390	490	20	0.27	1.7	0	0.60	0.050	0.050	0	.011
S 430 GP	430	510	19	0.27	1.7	0	0.60	0.050	0.050	0.	011
ArcelorMittal mill	specification										
S 460 AP	460	550	17	0.27	1.7	0	0.60	0.050	0.050	0.	011
AMLoCor	Min. yield	Min. tensile	Min. elongation			Chen	nical comp	oosition (9	6 max)		
	strength R _{eH} MPa	strength R _m MPa	L₀=5.65√S₀ %	С	Mn	Si	Р	S	N	Cr	AI
Blue 320	320	440	23	0.27	1.70	0.60	0.05	0.05	0.011	1.50	0.65
Blue 355	355	480	22	0.27	1.70	0.60	0.05	0.05	0.011	1.50	0.65
Blue 390	390	490	20	0.27	1.70	0.60	0.05	0.05	0.011	1.50	0.65

- Target was to have similar chemical composition and mechanical properties as a carbon steel according to EN10248
- Main difference is addition of Chrome and Aluminium
- Currently AZ-sections having a yield point up to 390 N/mm2 available
- Further increase of the range and yield strength in the future

Available range of products – to be extended

				b		h b				
Section		b	h	t	S	G	$W_{y, el}$	320	355	390
		mm	mm	mm	mm	kg/m²	cm ³ /m	Blue	Blue	Blue 390
AZ 19-700		700	421	9.5	9.5	114	1 870	\checkmark	\checkmark	\checkmark
AZ 20-700		700	421	10.0	10.0	119	1 945	\checkmark	\checkmark	\checkmark
AZ 26-700		700	460	12.2	12.2	147	2 600	\checkmark	\checkmark	\checkmark
AZ 28-700		700	461	13.2	13.2	157	2 760	\checkmark	\checkmark	×
AZ 26-700N		700	460	13.5	10.0	138	2 600	\checkmark	\checkmark	\checkmark
AZ 28-700N		700	461	14.5	11.0	149	2 765	\checkmark	\checkmark	×
AZ 38-700N		700	500	16.0	12.2	181	3 795	\checkmark	×	×
AZ 40-700N		700	501	17.0	13.2	192	3 995	\checkmark	×	×
AZ 44-700N		700	500	19.0	15.0	214	4 405	\checkmark	×	×
AZ 46-700N		700	501	20.0	16.0	225	4 605	\checkmark	×	×
AZ 26		630	427	13.0	12.2	155	2 600	\checkmark	\checkmark	\checkmark
	b widt h heigl		C V		m of wall ction modulu	S			ilable ently unavaila	ble

Please check our website for latest updates. Combi-walls will be offered in the future.

AMLocor long time survey in harbour environments

- Comparison between Carbon steel and AMLocor
- ongoing tests on plates and individual sheet piles

Survey in fresh water sites with known corrosion issues

- Exposure of AMLoCor coupons in fresh waters
 - For inland waterways
 - In case of suspected highest corrosion rates than normally

Coupons exposure testing with Voies Navigables de France

Driving test. Copenhagen, DK, 2010

- location: Marmormolen, Copenhagen.
- 6 double piles AZ 26-700, 14.0 m long
- 3 AMLoCor Blue355, 3 S355GP
- 2 of each steel grade driven with impact hammer (UddComb H6H), one with vibratory hammer (PVE2520)
- driving through marine deposit, coarse gravel into limestone with cobbles / boulders
- PDA measurements (dynamic stresses during driving) and CAPWAP (estimation of bearing capacity) by independent Danish company

Results:

- Both steel grades show an excellent ductile behaviour.
- Similar behaviour. No major damages to the sheet piles.

Weldability

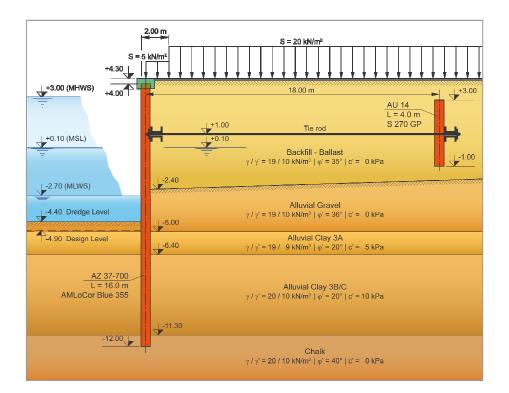
• Carbon Equivalent Value (CEV), similar to carbon steel

 $CEV = C + \frac{Mn}{6} + \frac{(Cr + Mo + V)}{5} + \frac{(Mr + Cu)}{15}$

- welding
 - tubes (SAW)
 - C9 (MAG)
 - sheet piles (MAG & SAW)
- qualification of welding processes
- qualification of welders (Note: steel not standardized)

No 'incidental' welding on job site

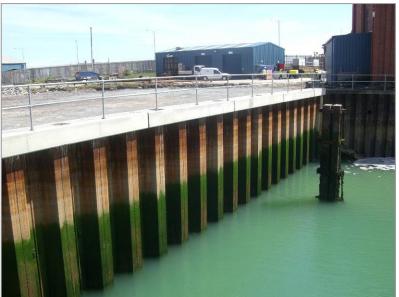
Weldability – WPS for AM-Locor


Arcel	orMit	tal					- 1	W	elding P	roce	dure	Specific	ation
WPS-	01/20	12					Revision 0 Authorised by		Date	Da	te	By 20/03/	13
Company	Name :		To whom it	may concer	n	Ť	Project:						
Welding P	rocess(es	i):	135- MAG			t	. Topeoe.			+			
Supporting	g PQR No	.(s) :	1			t							
JOINT DE	SIGN US	ED				t	POSITION						
Type :		Single	x	D	ouble weld	1	Position of	Groo	ve				
Backing:		Yes	H		No X		Vertical pro	gress	ion	Up		Down	
Backing N	laterial :		None				ELECTRIC	AL C	HARACTERIS	IICS			
Root Oper	ning: Mi	in 45°	Root Face D	imension:	See page 2		Transfer m	ode (GMAW)				
Groove Ar	ngle: see p	page 2	Radius not	applicable		t	Current	AC	DC+ DCE	Р	DCE	N Puls	sed
Back Gou						t	Other						
BASE ME	TALS					t	Tungsten E	lectro	xde (GTAW)		not ap	plicable	
Material S	pec.		AZ26-700 do	ouble piles						Size	1		
Type or G	rade		AMLoCor Bl	ue S320		1				Туре	/		
Thickness 12,2mm	Groo	ve)		Fillet		t	TECHNIQU	JE					
			,				Stringer or	Weav	ve Bead		Stringe	er Bead	
Diameter	(Pipe)						Multi-pass ((per side)	or Sin	gle pass		Multi-p	ass	
FILLER M	ETALS		UNION NIM	oCr		+	(per side)	alaat					
EN Classi			EN ISO 168	34A- G696M			Number of	elect	oues				
Specificat AWS Clas			Mn4Ni1.5CF AWS A.5.28		-G	╀	Electrode S	ipacir	g		Longitu	dinal	
AWS Clas Specificati											Lateral		
SHIELDIN	IG					1					Angle		
Flux			Gas: 82% A	r / 18% CO2	Type M21		Contact Tu	be to	Work Distance				
Electrode-	Flux (Clas	ss)	Flow Rate				Peening						
			Gas Cup Siz	e			Interpass C	leani	ng		Wire b	rushing	
PREHEAT	r					╞				π		•	
Preheat T	-		- (if air tem	p. < 5°C. prel	heat temp.	╀	Temp.			- /			
			min. 80 °C)	i i i i i i i i i i i i i i i i i i i	1	╞							
Interpass	Temp.,	Min.:	-	Max.	: 200°C	L	Time			1			
					WELDING	PR	OCEDURE						
Pass	Process	FI	iller Metals	C	ourant (A)		Voltage (V)		Fravel Speed			Joint Details	
or Layer		Clas		Type & Polarity	Amps or Wi Feed Speed 330± 10%	re d						preparation	1 see
1 to 7	135		1.2	DC+	330± 10%	6	28± 10%	+	9.6m/min		4	WS D1-1	
				1				+			i	in page 2	
$ \rightarrow $								\pm					
-+		_	_					+					
				-				+					
		1	1	1	1		1	1					

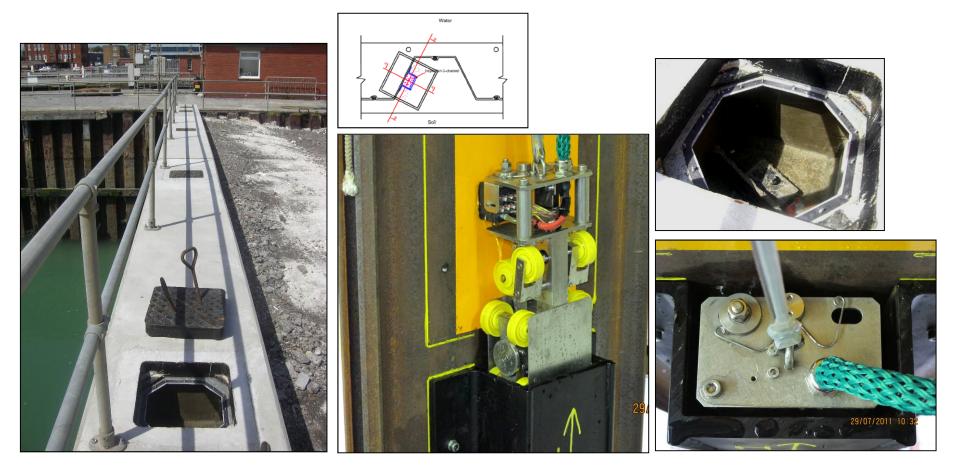
PS-01/20	009				Revision 0 Authorised by	Date C. Wenger	Date	By 2	0/03/13	
AW	S D1.1									
Single-bev Butt joint (el-groove weld B)		+ + - -				BACKGOU	GE		
		Base Metal Thickr	ness	G	roove Preparatio	n				
		(U = unlimited				ances	Allowed	Gas		
Welding Process	Joint Designation	T ₁	Т2	Root Face Groove Angle	As Detailed (see 3.13.1)	As Fit-Up (see 3.13.1)	Welding Positions	Shielding for FCAW	Notes	
SMAW	B-U4b	U	-	R = 0 to 1/8	+1/16, -0	+1/16, -1/8	All	-	3, 4, 5,	
GMAW FCAW	B-U4b-GF	U	-	f = 0 to 1/8 $\alpha = 45^{\circ}$	+1/16, -0 +10°, -0°	Not limited 10°, -5°	All	Not required	1, 3, 4,	
SAW	B-U4b-S	U	U	R = 0 f = 1/4 max $\alpha = 60^{\circ}$	±0 +0, -1/8 +10°, -0°	+1/4, -0 ±1/16 10°, -5°	F	-	3, 4, 10	
	-prove weld (5)	B-U5			0	Teleminosa a Detaliod As-Fi+U ee 3.13.13 (see 3.13 Fi=±0. +116,-0 =+10,-0 +10,-1 =10,-0 +10,-1	(1) D			

		Bassa Metai This (U = uniimii		Groo	e Preparation		ALTOWARD	Lars-	
Welding Process	Joint Designation	T,	τ,	Reet Opening	Root Face	Groome Anglo	Welding	Shielding for FCAIV	Notes
	B-U56	U Specer = 1/8 x R	U	R = 1/4	f = 0 to 1.49	$\alpha = 45^{\circ}$	Al	-	3, 4, 5 8, 10
SMAW		U.		R = 1/4	1 ± 0 to 1.8	a = 45°	Al	-	4, 5, 7 8, 10 11
	TC-U5a	Specer = 1/4 x R	U.	R = 5/8	1 = 0 to 1.18	$\alpha = 30^{\circ}$	F, OH	-	4, 5, 7 8, 10 11

Pilot project. Shoreham, UK (2010)



4 sheet piles equipped with additional channel elements required for the inspection of the residual thickness in the future.


2 standard S 355 GP sheet piles serve as reference samples.

Single-anchored quay ~30 m long retained height of 8.7 m AZ 38-700, 16.0 m long, AMLoCor Blue355.

AM LoCor - Pilot Project in Port of Shoreham, UK – AZ38-700

- special measuring probe for continuous long term measurements
- first results after 5 years

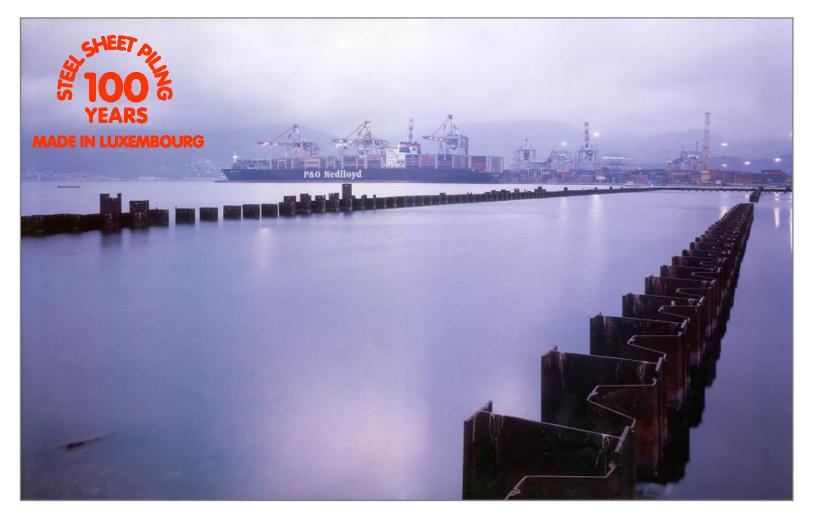
AMLocor Projects

<u>Quay Wall in Ravavu – Papua New</u> <u>Guinea</u> AZ 26-700, 16.0 m long, AMLoCor Blue355 – 800 tons

Quay Wall at Mairs Yard, Lerwick, Shetland Islands

AZ 44-700, 11.5 m -15.5 m long, AMLoCor Blue320 – 600 tons.

- pretreatment of basaltic rock by blasting
- piles have been driven 2 m deep into the blasted rock



AM-Locor Conclusions

- Alternative for Cathodic Protection Systems (no maintainance / more environmentally friendly)
- Especially interesting for lighter walls (cost for CP per square meter / AM-Locor per ton – about 10% more in comparison to carbon steel)
- Broader range of sections and increase of available yield strength foreseen

Many thanks for you attention

sheetpiling.arcelormittal.com